AI Model Comparison 2025: เปรียบเทียบ LLMs ยอดนิยม
การเลือก AI model ที่เหมาะสมมีผลต่อคุณภาพงานและค่าใช้จ่าย มาเปรียบเทียบ models ยอดนิยมกัน
Overview ของ Major Players
OpenAI
GPT-4o (Flagship)
- Multimodal (text + vision + audio)
- Best overall performance
- $2.50/1M input, $10/1M output
GPT-4o-mini
- Fast และ affordable
- Great for most tasks
- $0.15/1M input, $0.60/1M output
o1 (Reasoning)
- Deep reasoning capability
- Complex problem solving
- Higher cost, slower
Anthropic
Claude Opus 4 (Most Capable)
- Best reasoning
- Long context (200K)
- $15/1M input, $75/1M output
Claude Sonnet 4 (Balanced)
- Great balance of speed/quality
- Good for production
- $3/1M input, $15/1M output
Claude 3.5 Haiku (Fast)
- Fastest response
- Most affordable
- $0.80/1M input, $4/1M output
Gemini 1.5 Pro
- Long context (1M+ tokens)
- Multimodal
- Competitive pricing
Gemini 1.5 Flash
- Fast inference
- Cost-effective
- Good for high-volume
Meta (Open Source)
Llama 3.1 (70B/405B)
- Open source
- Self-hostable
- Free to use
Llama 3.2
- Multimodal support
- Smaller sizes available
- Edge deployment
Comparison Table
Performance
Task GPT-4o Claude Gemini Llama
────────────────────────────────────────────────────
Coding ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐
Reasoning ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐
Creative Writing ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐
Math ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐
Long Context ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐
Vision ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐
Safety ⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐⭐⭐
Pricing (per 1M tokens)
Model Input Output
─────────────────────────────────────
GPT-4o $2.50 $10.00
GPT-4o-mini $0.15 $0.60
Claude Opus 4 $15.00 $75.00
Claude Sonnet 4 $3.00 $15.00
Claude 3.5 Haiku $0.80 $4.00
Gemini 1.5 Pro $1.25 $5.00
Gemini 1.5 Flash $0.075 $0.30
Llama 3.1 (hosted) ~$0.50 ~$1.00
Llama (self-hosted) GPU cost only
Context Length
Model Context Window
─────────────────────────────────────
GPT-4o 128K tokens
GPT-4o-mini 128K tokens
Claude Opus/Sonnet 200K tokens
Claude Haiku 200K tokens
Gemini 1.5 Pro 2M tokens (!)
Gemini 1.5 Flash 1M tokens
Llama 3.1 128K tokens
Use Case Recommendations
For Coding
Best: GPT-4o, Claude Sonnet 4
Why:
- Strong code understanding
- Good debugging capabilities
- Consistent formatting
Alternative: Llama 3.1 70B (self-hosted)
For Creative Writing
Best: Claude Sonnet 4, Claude Opus 4
Why:
- Natural, engaging writing
- Better at maintaining style
- Understands nuance
Alternative: GPT-4o for versatility
For Analysis & Research
Best: Claude Opus 4, o1
Why:
- Deep reasoning
- Thorough analysis
- Can handle complexity
Alternative: GPT-4o for speed
For High-Volume Production
Best: GPT-4o-mini, Gemini Flash
Why:
- Low cost
- Fast response
- Good enough quality
Alternative: Self-hosted Llama
For Long Documents
Best: Gemini 1.5 Pro, Claude
Why:
- 1M+ context for Gemini
- 200K for Claude
- No chunking needed
Alternative: RAG with smaller models
For Vision Tasks
Best: GPT-4o, Gemini 1.5 Pro
Why:
- Strong image understanding
- Good at details
- Multimodal native
Alternative: Claude for analysis
Choosing the Right Model
Decision Framework
Start with these questions:
1. What's your primary use case?
- Coding → GPT-4o or Claude
- Analysis → Claude Opus
- General → GPT-4o-mini
2. What's your budget?
- High → Use best models
- Medium → GPT-4o-mini, Sonnet
- Low → Gemini Flash, Llama
3. How important is latency?
- Critical → Haiku, Flash, mini
- Moderate → Sonnet, GPT-4o
- Not important → Opus, o1
4. Do you need special capabilities?
- Long context → Gemini
- Vision → GPT-4o
- Safety → Claude
- Self-host → Llama
By Application Type
Chatbot:
- Production: GPT-4o-mini or Sonnet
- Premium: GPT-4o or Claude Opus
Code Assistant:
- Speed: GPT-4o-mini
- Quality: GPT-4o or Claude
Content Generation:
- Quality: Claude Sonnet
- Volume: Gemini Flash
Document Analysis:
- Short docs: Any model
- Long docs: Gemini or Claude
Research/Analysis:
- Deep: Claude Opus or o1
- Quick: GPT-4o
Multi-Model Strategy
Routing by Complexity
def route_to_model(query, context):
# Simple queries → cheap model
if is_simple_query(query):
return "gpt-4o-mini"
# Long context → specialized model
if len(context) > 100000:
return "gemini-1.5-pro"
# Complex reasoning → best model
if requires_reasoning(query):
return "claude-opus-4"
# Default
return "gpt-4o"
Fallback Strategy
async def call_with_fallback(prompt):
models = [
"gpt-4o", # Primary
"claude-sonnet-4", # Fallback 1
"gpt-4o-mini" # Fallback 2
]
for model in models:
try:
return await call_model(model, prompt)
except Exception as e:
print(f"{model} failed: {e}")
continue
raise Exception("All models failed")
A/B Testing Models
import random
def select_model_ab_test():
"""A/B test different models."""
variants = {
"gpt-4o": 0.5,
"claude-sonnet-4": 0.3,
"gemini-1.5-pro": 0.2
}
r = random.random()
cumulative = 0
for model, weight in variants.items():
cumulative += weight
if r < cumulative:
return model
return "gpt-4o"
Cost Optimization
Tiered Approach
Tier 1: Simple queries
- Model: GPT-4o-mini
- Cost: ~$0.15-0.60/1M tokens
Tier 2: Standard queries
- Model: Claude Sonnet
- Cost: ~$3-15/1M tokens
Tier 3: Complex queries
- Model: GPT-4o or Claude Opus
- Cost: ~$15-75/1M tokens
Cost Calculation
def estimate_cost(prompt, response_tokens, model):
pricing = {
"gpt-4o": {"input": 2.50, "output": 10.00},
"gpt-4o-mini": {"input": 0.15, "output": 0.60},
"claude-sonnet-4": {"input": 3.00, "output": 15.00},
"claude-opus-4": {"input": 15.00, "output": 75.00}
}
input_tokens = count_tokens(prompt)
prices = pricing[model]
input_cost = (input_tokens / 1_000_000) * prices["input"]
output_cost = (response_tokens / 1_000_000) * prices["output"]
return input_cost + output_cost
สรุป
Model Recommendations:
| Use Case | Recommended Model |
|---|---|
| General | GPT-4o-mini |
| Coding | GPT-4o, Claude |
| Writing | Claude Sonnet |
| Analysis | Claude Opus |
| High Volume | Gemini Flash |
| Long Context | Gemini 1.5 Pro |
| Self-Host | Llama 3.1 |
Key Takeaways:
- No single "best" model
- Match model to use case
- Consider cost vs quality
- Use multi-model strategies
Remember:
- Test with your actual data
- Monitor performance metrics
- Adjust based on results
- Stay updated on new models
อ่านเพิ่มเติม:
เขียนโดย
AI Unlocked Team
บทความอื่นๆ ที่น่าสนใจ
วิธีติดตั้ง FFmpeg บน Windows และ Mac: คู่มือฉบับสมบูรณ์
เรียนรู้วิธีติดตั้ง FFmpeg บน Windows และ macOS พร้อมการตั้งค่า PATH อย่างละเอียด เพื่อใช้งานโปรแกรมตัดต่อวิดีโอและเสียงระดับมืออาชีพ
04/12/2568
สร้าง AI-Powered SaaS: จากไอเดียสู่ผลิตภัณฑ์
คู่มือครบวงจรในการสร้าง AI-Powered SaaS ตั้งแต่การวางแผน พัฒนา ไปจนถึง launch และ scale รวมถึง tech stack, pricing และ business model
03/02/2568
AI Security: วิธีใช้ AI อย่างปลอดภัย
เรียนรู้แนวทางการใช้ AI อย่างปลอดภัย ครอบคลุม prompt injection, data privacy, API security และ best practices สำหรับองค์กร
02/02/2568