AI Business
Sales
Automation
Lead Generation
CRM

AI Sales Automation: เพิ่มยอดขายด้วย AI

เรียนรู้วิธีใช้ AI เพิ่มประสิทธิภาพทีมขาย ตั้งแต่ lead scoring, outreach automation ไปจนถึง sales forecasting

AI Unlocked Team
25/01/2568
AI Sales Automation: เพิ่มยอดขายด้วย AI

AI Sales Automation: เพิ่มยอดขายด้วย AI

AI กำลังเปลี่ยนแปลงวิธีการขาย ช่วยให้ทีมขายทำงานได้อย่างมีประสิทธิภาพและปิดดีลได้มากขึ้น

AI ช่วยงานขายอย่างไร?

Sales Process ที่ AI ช่วยได้

Sales Funnel:

1. Lead Generation
   AI: หา leads จาก data
   AI: Identify ideal customers

2. Lead Qualification
   AI: Score leads อัตโนมัติ
   AI: Prioritize hot leads

3. Outreach
   AI: Personalized messages
   AI: Optimal timing

4. Follow-up
   AI: Automated sequences
   AI: Smart reminders

5. Closing
   AI: Deal insights
   AI: Objection handling

6. Forecasting
   AI: Revenue prediction
   AI: Pipeline analysis

Impact ที่คาดหวังได้

Before AI:
- 50 calls/day per rep
- 20% response rate
- 5% close rate

After AI:
- 100+ outreach/day
- 35% response rate (targeted)
- 12% close rate (qualified leads)

Result: 2.4x more deals closed

Lead Scoring with AI

Traditional vs AI Scoring

Traditional Scoring:
- ใช้ rules แบบตายตัว
- Company size = 10 points
- Job title = 5 points
- Website visit = 3 points

AI Scoring:
- เรียนรู้จาก historical data
- หา patterns ที่ซ่อนอยู่
- ปรับตัวอัตโนมัติ
- แม่นยำกว่า 3-5x

Implementation

import pandas as pd
from sklearn.ensemble import RandomForestClassifier

# Prepare training data from won/lost deals
def train_lead_scoring_model(historical_deals):
    features = [
        'company_size',
        'industry_score',
        'website_visits',
        'email_opens',
        'content_downloads',
        'demo_requested',
        'budget_indicated'
    ]

    X = historical_deals[features]
    y = historical_deals['won']  # 1 = won, 0 = lost

    model = RandomForestClassifier(n_estimators=100)
    model.fit(X, y)

    return model

# Score new leads
def score_lead(model, lead_data):
    score = model.predict_proba([lead_data])[0][1]
    return {
        'score': round(score * 100),
        'priority': 'hot' if score > 0.7 else 'warm' if score > 0.4 else 'cold'
    }

AI-Enhanced Scoring

def get_ai_lead_insights(lead_info):
    prompt = f"""
Analyze this lead and provide:
1. Score (0-100)
2. Key buying signals
3. Potential objections
4. Recommended approach

Lead Info:
- Company: {lead_info['company']}
- Industry: {lead_info['industry']}
- Size: {lead_info['employees']} employees
- Role: {lead_info['job_title']}
- Recent Activity: {lead_info['activity']}
- Budget: {lead_info['budget_range']}
"""

    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": prompt}]
    )

    return response.choices[0].message.content

Email Outreach Automation

Personalized at Scale

def generate_personalized_email(lead, template_type="initial"):
    prompt = f"""
Write a personalized sales email for:

Lead Info:
- Name: {lead['name']}
- Company: {lead['company']}
- Role: {lead['title']}
- Industry: {lead['industry']}
- Pain Point: {lead['likely_pain_point']}

Our Product: AI-powered customer support platform

Requirements:
- Keep under 150 words
- Personalized opening (mention their company/role)
- One clear value proposition
- Soft call-to-action
- Professional but friendly tone
"""

    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": prompt}]
    )

    return response.choices[0].message.content

Email Sequences

class EmailSequence:
    def __init__(self, lead):
        self.lead = lead
        self.sequence = [
            {"day": 0, "type": "initial", "channel": "email"},
            {"day": 3, "type": "follow_up_1", "channel": "email"},
            {"day": 7, "type": "value_add", "channel": "email"},
            {"day": 10, "type": "linkedin", "channel": "linkedin"},
            {"day": 14, "type": "breakup", "channel": "email"}
        ]

    def generate_message(self, step):
        if step["type"] == "initial":
            return self._initial_email()
        elif step["type"] == "follow_up_1":
            return self._follow_up_email()
        elif step["type"] == "value_add":
            return self._value_add_email()
        elif step["type"] == "breakup":
            return self._breakup_email()

    def _initial_email(self):
        # Generate personalized initial outreach
        pass

    def _follow_up_email(self):
        # Generate follow-up referencing initial email
        pass

Sales Forecasting

AI-Powered Predictions

def generate_sales_forecast(pipeline_data, historical_data):
    # Analyze each deal
    deal_predictions = []

    for deal in pipeline_data:
        prediction = predict_deal_outcome(deal, historical_data)
        deal_predictions.append({
            'deal_id': deal['id'],
            'value': deal['value'],
            'close_probability': prediction['probability'],
            'expected_value': deal['value'] * prediction['probability'],
            'predicted_close_date': prediction['close_date']
        })

    # Aggregate forecast
    forecast = {
        'pipeline_value': sum(d['value'] for d in deal_predictions),
        'expected_value': sum(d['expected_value'] for d in deal_predictions),
        'high_confidence_deals': [d for d in deal_predictions if d['close_probability'] > 0.7],
        'at_risk_deals': [d for d in deal_predictions if d['close_probability'] < 0.3]
    }

    return forecast

Deal Risk Analysis

def analyze_deal_risk(deal_info, conversation_history):
    prompt = f"""
Analyze this deal for risks and provide recommendations:

Deal Info:
- Value: ${deal_info['value']:,}
- Stage: {deal_info['stage']}
- Days in Stage: {deal_info['days_in_stage']}
- Last Contact: {deal_info['last_contact']}
- Competition: {deal_info['competitors']}

Recent Conversations:
{conversation_history}

Provide:
1. Risk Level (Low/Medium/High)
2. Key Risk Factors
3. Next Best Action
4. Talking Points for Next Call
"""

    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": prompt}]
    )

    return response.choices[0].message.content

AI Sales Assistant

Meeting Preparation

def prepare_for_meeting(prospect_company, meeting_purpose):
    prompt = f"""
Prepare a sales meeting brief for:

Company: {prospect_company}

Research and provide:
1. Company Overview (recent news, funding, growth)
2. Key Decision Makers
3. Likely Pain Points
4. Competitor Products They Might Use
5. Talking Points
6. Potential Objections & Responses
7. Questions to Ask
8. Success Stories Relevant to Them
"""

    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": prompt}]
    )

    return response.choices[0].message.content

Call Summary & Action Items

def summarize_sales_call(transcript):
    prompt = f"""
Summarize this sales call and extract action items:

Transcript:
{transcript}

Provide:
1. Key Discussion Points
2. Customer Pain Points Mentioned
3. Objections Raised
4. Buying Signals
5. Action Items (for us)
6. Action Items (for customer)
7. Next Steps
8. Deal Stage Recommendation
9. Follow-up Email Draft
"""

    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": prompt}]
    )

    return response.choices[0].message.content

CRM Integration

Automated Data Entry

class AIEnhancedCRM:
    def __init__(self, crm_client):
        self.crm = crm_client

    def process_email_to_crm(self, email):
        # Extract key info from email
        extracted = self._extract_email_info(email)

        # Update CRM
        self.crm.update_contact(
            email=email['from'],
            data={
                'last_contact': email['date'],
                'sentiment': extracted['sentiment'],
                'key_topics': extracted['topics'],
                'next_action': extracted['suggested_action']
            }
        )

        # Create task if needed
        if extracted['requires_followup']:
            self.crm.create_task(
                contact_email=email['from'],
                task=extracted['suggested_action'],
                due_date=extracted['suggested_date']
            )

    def _extract_email_info(self, email):
        prompt = f"""
Analyze this sales email and extract:

Subject: {email['subject']}
Body: {email['body']}

Return JSON with:
- sentiment: positive/neutral/negative
- topics: list of discussed topics
- requires_followup: true/false
- suggested_action: next step
- suggested_date: when to follow up
"""

        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": prompt}],
            response_format={"type": "json_object"}
        )

        return json.loads(response.choices[0].message.content)

Best Practices

1. Human + AI Collaboration

AI Should Do:
✅ Data analysis
✅ Lead scoring
✅ Draft messages
✅ Research
✅ Scheduling

Human Should Do:
✅ Relationship building
✅ Complex negotiations
✅ Strategic decisions
✅ Final message review
✅ Closing deals

2. Quality Control

# Always review AI-generated content
def review_before_send(ai_content, lead_info):
    checklist = {
        'personalization_accurate': check_names_company(ai_content, lead_info),
        'no_hallucinations': verify_facts(ai_content),
        'tone_appropriate': check_tone(ai_content),
        'cta_clear': has_clear_cta(ai_content)
    }

    return all(checklist.values()), checklist

3. Continuous Learning

Track and improve:
- Email open rates by AI version
- Response rates by template
- Conversion by lead score
- Forecast accuracy over time

สรุป

AI Sales Automation Benefits:

  1. Efficiency: 2-3x more outreach
  2. Personalization: Tailored at scale
  3. Prioritization: Focus on hot leads
  4. Insights: Data-driven decisions
  5. Forecasting: Accurate predictions

Key Applications:

  • Lead scoring
  • Email personalization
  • Meeting preparation
  • Call summarization
  • CRM automation

Remember:

  • AI assists, humans close
  • Always review AI content
  • Track and iterate
  • Maintain authenticity

อ่านเพิ่มเติม:


เขียนโดย

AI Unlocked Team